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In this paper, we investigate the fidelity for the Heisenberg chain with the next-nearest-neighbor interaction
�or the J1-J2 model� and analyze its connections with quantum phase transition. We compute the fidelity
between the ground states and find that the phase transition point of the J1-J2 model cannot be well charac-
terized by the ground-state fidelity for finite-size systems. Instead, we introduce and calculate the fidelity
between the first excited states. Our results show that the quantum transition can be well characterized by the
fidelity of the first excited state even for a small-size system.
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Quantum phase transitions �QPTs� driven by purely quan-
tum fluctuations have been extensively studied in the recent
years �1�. One of the research focuses in the cross fields of
quantum many-body theory and quantum-information theory
is the application of quantum entanglement to the analysis of
QPTs �2,3�. The intriguing issue of the role of quantum en-
tanglement in characterizing QPTs has been investigated for
different many-body systems �2–7�. More recently, the
ground-state fidelity or the overlap between two ground
states corresponding to two slightly different values of the
external parameters is proposed to characterize QPTs �8,9�.
Within examples of the Dicke and XY models, it has been
shown that the ground-state fidelity shows a dramatic drop in
the vicinity of the QPT point of the system. Similar to the
quantum entanglement, the notation of fidelity is also bor-
rowed from the field of quantum information science. Being
a pure geometrical quantity, an obvious advantage of the
fidelity is that it can be a promising candidate to characterize
the QPT because no a priori knowledge of the order param-
eter and the symmetry of the system is needed �9�. By using
the fidelity as a measure, Buonsante et al. can determine the
quantum phase transition point of the Bose-Hubbard model
which is difficult to characterize by the quantum entangle-
ment �10�.

Despite the success of the ground-state fidelity �8–13� as a
measure of QPTs in several concrete examples, it is still not
clear whether the effectiveness of the ground-state fidelity in
the study of QPT is general for most of the many-body sys-
tems �12�. One of the obstacles lies in the difficulty in the
calculation of ground-state fidelity because it is generally
very hard to analytically obtain the ground-state wave func-
tion of a many-body system except for a few examples. An
even more basic question is whether the ground-state fidelity
is a model-independent indicator for QPTs which exhibits
qualitatively different behaviors at and off the transition
point?

In this paper, we will show that the ground-state fidelity is
not always a good characterization of the regions of critical-
ity that define QPTs for a one-dimensional Heisenberg sys-
tem with next-nearest-neighbor coupling. Instead, we find
that the overlap of the first excited state or the fidelity of the
first excited state shows a dramatic drop in the vicinity of the

QPT point of the system and can be used to characterize the
QPT. We note that our conclusions are based on the finite
size of the chain considered �up to 24 sites� which may not
exclude that the ground-state fidelity for very large systems
could in principle be a characterization of quantum phase
transition just as in the case of the XY model �9�. However,
in the current computation sources it is not practical to com-
pute a nonintegrable spin system to a very large size as in the
case of the exactly solvable XY model.

The Hamiltonian of a one-dimensional Heisenberg chain
with the next-nearest-neighbor coupling reads as

H��� = �
j=1

L

�ŝ jŝ j+1 + �ŝ jŝ j+2� , �1�

where ŝ j denotes the spin-1/2 operator at the jth site, L de-
notes the total number of sites, and the periodic boundary
conditions ŝ1= ŝL+1 are assumed. The only effective param-
eter � refers to the ratio between the next-nearest-neighbor
�NNN� coupling and the nearest-neighbor �NN� coupling.
This model is invariant under a global SU�2� rotation, which
implies total spin conservation. For a general �, the model is
not analytically solvable. When �=0, the model is exactly
solvable by Bethe-ansatz method �14,15�. When �=1 /2, the
model reduces to the Majumdar-Ghosh model whose ground
state is a uniformly weighted superposition of the two
nearest-neighbor valence bond states �16�.

The ground-state properties of the model �1� has been
widely studied by analytical method, such as bosonization
and effective field theory �17,18�, and numerical method,
such as exact diagonalization �19,20� and density matrix
renormalization group �21–23�. The quantum phase transi-
tion driven by the frustration �the competition between the
NN and NNN interaction� is well understood for general �.
Frustration due to � is irrelevant when ���c, and the system
renormalizes to the Heisenberg fixed point, whose ground
state is described as a spin fluid or Luttinger liquid with
massless spinon excitations. As ���c, the frustration term is
relevant and the ground state flows to the dimerized phase
with a spin gap open. The transition from spin fluid to dimer-
ized phase is known to be of Berezinskii-Kosterlitz-Thouless
�BKT� type �17,18,24,25�. It has been difficult to determine
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the BKT point numerically due to the problem of logarithmic
correction �26�. The critical value of �c=0.2411±0.0001 has
been accurately determined by numerical methods and con-
formal field theory method �27,28�. The entanglement for the
model �1� has been studied in Ref. �5�, where the ground
concurrences between the nearest neighbors and the next-
nearest neighbors are calculated as functions of �. No singu-
larities of the concurrences around �c are found for the sys-
tem with different sizes, which implies that the concurrences
may be not an effective characterization of the QPT. Very
recently, Chhajlany et al. found that there is a deviation
from the scaling behavior of the entanglement entropy
characterizing the unfrustrated Heisenberg chain when
�=J2 /J1�0.25 and thus concluded that this feature can be
used as an indicator of the dimer phase transition �7�.

In the present work, we will study the features of the
fidelity for the model �1� and focus on the regime of
0���0.5 in which the BKT-type quantum phase transition
happens. Following Ref. �9�, the ground-state fidelity is de-
fined as the overlap between ��0���� and ��0��+���, i.e.,

F0��,�� = ���0�����0�� + ���� , �2�

where �0��� is the ground-state wave function of Hamil-
tonian �1� corresponding to the parameter � and � is a small
quantity. In general, one can numerically solve the eigen-
value problem of the Hamiltonian and obtain the eigenfunc-
tions by using the exact diagonalization method for a finite-
size system.

We calculate the ground-state fidelity of the Heisenberg
chain given by Eq. �1� for different sizes. In Fig. 1, we
plot the ground-state fidelity as a function of � with
�=1.7�10−3 for the frustrated Heisenberg chain with sizes
of L=6,8 ,10,12,14,16,18,20,22,24. We observe that the
ground-state fidelity is almost a constant and equal to unity
for a wide range of the parameter 0���0.5. According to
�9�, one expects a sharp drop of the ground-state fidelity to
characterize the critical point of the QPT. However, for the
present model, no sharp drop in the ground-state fidelity is
detected in the regime under investigation for the systems
with size up to 24 sites. Also, we do not find any peaks in the
derivatives of the ground-state fidelity, which we do not

show here. We note that no exact analytical results are avail-
able for the present J1-J2 model except the special case of
J2=0 and J2 /J1=0.5. Therefore, we must calculate the
ground-state wave functions as well as the ground-state fi-
delity by using the numerical exact diagonalization method
which however limits the size of our investigated system.
Nevertheless, our results imply that critical points of the
quantum phase transitions cannot be well characterized by
the ground-state fidelity for a finite-size system.

We recall that, in the scheme of field theory method, the
phase transition point for the model �1� is determined by the
opening of the elementary excitation gap �17�, which implies
that the excited states play an important role in determining
the phase diagram of the system. Therefore, it is instructive
to investigate the fidelity of the first excited state of the
Heisenberg chain �1�. Similarly, the fidelity of the first ex-
cited state of the system is defined as the overlap of the first
excited states with parameter � and �+�,

F1��,�� = ���1�����1�� + ���� , �3�

where �1��� represents the first excited state of the system.
We first calculate the first excited state fidelity of a Heisen-
berg chain with L=10 as shown in Fig. 2. Obviously, there is
a sudden drop in the first excited state fidelity at the point a
little smaller than �=0.25. This lights our hope and con-
vinces us that the first excited state fidelity may be a good
candidate to characterize the critical point between the spin
fluid phase and the dimerized phase. From this point of view,
we continue to calculate the first excited state fidelity of the
J1-J2 model for cases L=6,8 ,12. Figure 3 shows the
behavior of the first excited state fidelity F1�� ,�� with
�=1.7�10−4 as a function of � for the systems with differ-
ent sizes. The extrema of the first excited state fidelity fea-
ture a scaling behavior. The size dependence of the critical
point �c versus 1 /L2 is shown in Fig. 4. The four dots cor-
respond to the four cases L=12,10,8 ,6. We make a polyno-
mial fit to the four dots. We find that when it comes to the
case of L→�, the critical point is �c=0.241 07. This consists
with the value �c=0.2411±0.0001 given by �22,27,28� very
well. Now we can see that the ground-state fidelity is not

FIG. 1. �Color online�. Ground-state fidelity F0�� ,�� as a func-
tion of �. The lines from top to bottom correspond to Heisenberg
chains with sizes L=6,8,10,12,14,16,18,20,22,24, respectively.

FIG. 2. Fidelity of the first excited state F1�� ,�� as a function of
� for a Heisenberg chain composed of 10 spin sites.
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always effective for different models, at least for the J1-J2
model. For the model considered in this paper, instead of the
ground-state fidelity, we need to rely on the first excited state
fidelity to characterize the critical points of the quantum
phase transition.

To further exemplify why the fidelity of the first excited
state instead of the ground-state fidelity is able to character-
ize the QPT for the model considered here, let us consider
the lowest energy levels of the model �1� and analyze its
implication to the fidelity. In Fig. 5, we plot the energy spec-
trums of the Hamiltonian with L=10 in the regime of
0���0.5. The ground state is a singlet with Stotal

z =0 and is
nondegenerate except for the Majumda-Ghosh point with
�=0.5. The excited states corresponding to the dashed line
are threefold degenerate triplet with Stotal

z =0, ±1, whereas
the state corresponding to the dotted line is a singlet. It is
clear that no level crossing occurs for the ground-state en-
ergy. In general, the first-order quantum phase is character-
ized by the ground-state level crossing which leads to the
singularity of ground-state fidelity around to the crossing
point. Therefore, the ground-state fidelity is a natural choice

for characterizing the first-order QPT. When the level cross-
ing of the ground state is absent, the continuous quantum
phase transitions are actually caused by a reconstruction
�level crossing� of low-excitation spectrum of the system
�29�. Therefore, for such kind of system, the fidelity of the
first excited state might be a better indicator of QPT. The
level crossing of the excited state implies that the corre-
sponding fidelity will suddenly drop to zero in the crossing
point. This gives a straightforward explanation for why the
fidelity of the excited state is a suitable indicator for the QPT
of the J1-J2 model.

Though we restrict our attention to the J1-J2 model, the
similar property can be found in the BKT-like QPTs of other
models, such as the one-dimensional anisotropic Heisenberg
model where the Hamiltonian reads as

H�	� = �
j=1

L

�ŝ j
xŝj+1

x + ŝ j
yŝj+1

y + 	ŝ j
zŝ j+1

z � .

For the anisotropic Heisenberg model, a BKT-like phase
transition happens at the point 	=1, which is described by a
divergent correlation length but without true long-range or-
der. However, as in the case for the J1-J2 model, the fidelity
induced by the anisotropic term does not show the desired
singularity at the critical point. This phenomenon is consis-
tent with the fact that the ground-state fidelity intrinsically
depends on the fluctuation of the driving term �12�, and such
a fluctuation shows no singularity because of the absence of
true long-range order around the critical point. On the other
hand, as in the J1-J2 model, the phase transition in the aniso-
tropic Heisenberg model is also induced by the first excited
state level crossing �29�. This fact leads us to that the first
excited state overlap collapses at the critical point.

In summary, we have calculated the fidelity of the ground
state and the first excited state of the spin chain model with
the NNN interaction. Our results show that, contrary to the

FIG. 3. �Color online�. Fidelity of the first excited state F1�� ,��
as a function of �. Different colors correspond to Heisenberg chains
composed of different numbers of spin sites.

FIG. 4. Finite-size scaling of the extrema of first excited state
fidelity. A polynomial fit is made. According to this fit, when it
comes to the point L→�, �c=0.241 07.

FIG. 5. �Color online�. Energy spectrum of a Heisenberg chain
with L=10. Only the lowest three energy levels are given above.
The first and the second excited energy levels cross each other at
the point �c=0.2445. On the left-hand side of �c, the first excited
energy level is triply degenerate and on the right-hand side, it is a
singlet.
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first-order QPT for which the ground-state fidelity is a good
indicator, the fidelity of the low-lying excited state is an ef-
fective tool to quantify the quantum phase transition for the
system in which the continuous phase transition is induced
by the low-lying excited states. Though we restrict our cal-
culation on the J1-J2 model, our observation is general for a
class of BKT-like QPTs, which are induced by the first ex-
cited state level crossing, in the other one-dimensional many-

body systems, for which the discontinuity of fidelity of the
first excited state is intrinsically related to the QPTs.
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